THE KALMAN FILTER¹

The Kalman Filter² is a recursive program which estimates the "actual" value of a random variable (r.v.) vector **x** in a set of observations

$$z = Hx + v$$

where z are the observations, H is the transformation matrix, and v is an error vector.

Background. The least squares estimate \mathbf{x} which minimizes a cost function

$$J = (\mathbf{z} - \mathbf{H} \mathbf{x})^{\mathbf{T}} \mathbf{R}^{-1} (\mathbf{z} - \mathbf{H} \mathbf{x})$$

is

$$\mathbf{x} = \left[\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{H}\right]^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{z}$$

where **R** is a matrix of weights and the cost function J measures the weighted sum of squares of deviations. This is a purely deterministic solution, obtained by minimizing J by setting its gradient to zero and solving for \mathbf{x} .

Alternatively, one can argue that the "best" estimate is the value **x** which maximizes the probability of **z** having occurred, given known statistical properties of **v**. This is called the *maximum likelihood* estimate. This approach postulates any number of possible vectors **x** and *maximizes* the conditional probability $p(\mathbf{z}|\mathbf{x})$.

A third alternative is to use a Bayesian approach, in which the *a posteriori* probability of \mathbf{x} , given observations \mathbf{z} , is found from

$$p(\mathbf{x}|\mathbf{z}) = \frac{p(\mathbf{z}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{z})}$$
(1)

where $p(\mathbf{x})$ is an assumed a *priori* distribution on \mathbf{x} . We can assume any pdf on \mathbf{x} we choose; Bayes theorem will yield the appropriate conditional probability $p(\mathbf{x}|\mathbf{z})$, given appropriate distributions on $\mathbf{z}|\mathbf{x}$ and \mathbf{z} .

The distribution on $\mathbf{z}|\mathbf{x}$ can be evaluated from the observations, as can that on \mathbf{z} . The the issue is finding a method to maximize equation (1). By choosing a loss function in the form of a variance

 $^{^{\}rm 1}$ [CAL] C. A. La Varre, 29 Farewell Street, Newport, RI 02840-2563, January 1994

² [Gelb] Arthur Gelb, ed., *Applied Optimal Estimation*, The MIT Press, 1974, ISBN 0 262-700008-5, *pp.* 103ff.

$$L(\widetilde{\mathbf{x}}) = [\mathbf{x} - \mathbf{x}]^{\mathbf{T}} \mathbf{S}[\mathbf{x} - \mathbf{x}]$$

we can then compute a *variance* cost function as the expected value of the variance over all possible values of \mathbf{x} , given a conditional probability of \mathbf{x} on \mathbf{z} :

$$J = \iiint_{\mathbf{x}} [\mathbf{x} - \mathbf{x}]^{\mathbf{T}} \mathbf{S}[\mathbf{x} - \mathbf{x}] p(\mathbf{x} \mathbf{z}) dx_1 dx_2 dx_n$$
 (2)

where **S** is some positive semidefinite matrix. Minimizing J with respect to \mathbf{x} gives a *minimum variance* estimate \mathbf{x} . The minimization is accomplished again by setting the gradient of J to zero and solving for \mathbf{x} . It is given that the solution of this minimization is

$$\mathbf{x} = \left[\mathbf{P}_0^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \right]^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{z}$$
(3)

where $\mathbf{P}_{_{0}}$ is the *a priori* covariance matrix of \mathbf{x} and Gaussian distributions are assumed for \mathbf{x} and \mathbf{v} . This assumption is ameliorated by the observation that

Most often all we know about the characterization of a given random proces is its autocorrelation function. But there always exists a Gaussian random process possessing the same autocorrelation function; we therefore might as well assume that the given random process is itself Gaussian.³

The Kalman Filter. The Kalman filter uses these principles to calculate the optimal value of two matrices \mathbf{K}_k and $\mathbf{K'}_k$ which is used in a recursion formula to calculate the next value of the estimate \mathbf{x} in the form

$$\mathbf{x}_{k}^{+} = \mathbf{K}_{k} \mathbf{x}_{k}^{-} + \mathbf{K}_{k} \mathbf{z}_{k} \tag{4}$$

where \mathbf{x}_k^+ is the *a posteriori* estimate and \mathbf{x}_k^- is the *a priori* estimate for the *k*-th estimate of \mathbf{x} .

Each of these vary from the actual value \mathbf{x} by some estimation error, respectively $\widetilde{\mathbf{x}}_k^+$ and $\widetilde{\mathbf{x}}_k^-$:

$$\mathbf{x}_{k}^{+} = \mathbf{x}_{k} + \widetilde{\mathbf{x}}_{k}^{+}$$

$$\mathbf{x}_{k}^{-} = \mathbf{x}_{k} + \widetilde{\mathbf{x}}_{k}^{-}$$

$$(5)$$

The recursive nature of (4) indicates that successive observations $\mathbf{z}_{_{k}}$ are obtained as

$$\mathbf{z}_{k} = \mathbf{H}\mathbf{x}_{k} + \mathbf{v}_{k} \tag{6}$$

-

³ *Ibid.*, p. 105.

An assumption of zero mean observation and estimation errors results in

$$\mathbf{K'}_{k} = \mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k} \tag{7}$$

Substituting (5), (6), and (7) in (4) results in an expression for the *a posteriori* error:

$$\widetilde{\mathbf{x}}_{k}^{+} = \left[\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}\right] \widetilde{\mathbf{x}}_{k}^{-} + \mathbf{K}_{k} \mathbf{v}_{k} \tag{8}$$

and an expression for \mathbf{x}_k^+ :

$$\mathbf{x}_{k}^{+} = \mathbf{x}_{k}^{-} + \mathbf{K}_{k} \left[\mathbf{z}_{k} - \mathbf{H}_{k} \mathbf{x}_{k}^{-} \right]$$
(9)

The task then is to find a value for \mathbf{K}_{k} . This is accomplished following equation (2) by minimizing \mathbf{P}_{k}^{+} , the expected variance of the *a posteriori* error $\widetilde{\mathbf{x}}_{k}^{+}$. The error covariance matrix is

$$\mathbf{P}_{k}^{+} = E \left[\widetilde{\mathbf{x}}_{k}^{+} \widetilde{\mathbf{x}}_{k}^{+} \right]$$
 (10)

Expanding (10) with (8) and substituting

$$E[\mathbf{v}_k \mathbf{v}_k^{\mathsf{T}}] = \mathbf{R}_k$$

gives an expression for \mathbf{P}_k^+ which can be minimized with respect to \mathbf{K}_k resulting in

$$\mathbf{K}_{k} = \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T} \left[\mathbf{H}_{k} \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T} + \mathbf{R}_{k} \right]^{-1}$$
(11)

where the generalized covariance matrix $\boldsymbol{R}_{_{\!k}}$ is estimated on each successive set of observations as 4 by

$$\mathbf{R}_{k} = \frac{1}{n-1} \mathbf{x}_{k} \left[\mathbf{I} - \frac{1}{n} \mathbf{1} \cdot \mathbf{1}^{\mathrm{T}} \right] \mathbf{x}^{\mathrm{T}}$$
(12)

and 1 is the $n_X 1$ vector of 1s.

A simpler expression for \mathbf{P}_{k}^{+} is obtained from (11):

$$\mathbf{P}_{k}^{+} = \left[\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}\right] \mathbf{P}_{k}^{-} \tag{13}$$

 $^{^4}$ [Wichem] Richard A. Johnson and Dean W. Wichem, *Applied Multivariate Statistical Analysis*, Prentice Hall, 1988, ISBN 0-13-041146-9, p. 111

Strictly, we find the next *a priori* error covariance matrix, \mathbf{P}_{k+1} from the state transition matrix \mathbf{F}_{k} , where $\mathbf{x}_{k+1} = \mathbf{F}_{k} \mathbf{x}_{k}^{+}$ and

$$\mathbf{P}_{k+1}^{-} = \mathbf{F}_{k} \mathbf{P}_{k}^{+} \mathbf{F}_{k}^{T} + \mathbf{Q}_{k}$$
 (14)

where \mathbf{Q}_k is the covariance of the system noise \mathbf{w}_k . In practice we take $\mathbf{F}_k = \mathbf{I}$ and $\mathbf{Q}_k = 0$. Under this process, then

$$\mathbf{P}_{k\perp 1}^{-} = \mathbf{P}_{k}^{+} \tag{15}$$

In summary, given initial conditions for the unknown variables \mathbf{x}_0 , the error covariance matrix \mathbf{P}_0 , and the observation error covariance matrix \mathbf{R}_0 with a given system model

$$\mathbf{z}_{k} = \mathbf{H}\mathbf{x}_{k} + \mathbf{v}_{k} \tag{6}$$

we calculate the *Kalman gain matrix* \mathbf{K}_{k} with (11) and the updated variable covariance error matrix with(13), then calculate the next variable estimate from (9):

$$\mathbf{x}_{k}^{+} = \mathbf{x}_{k}^{-} + \mathbf{K}_{k} \left[\mathbf{z}_{k} - \mathbf{H}_{k} \mathbf{x}_{k}^{-} \right]$$
(9)

We then set $\mathbf{P}_{k+1}^- = \mathbf{P}_k^+$ and continue iteration until (9) converges satisfactorily.