THE KALMAN FILTER?

The Kdman Filter? isarecursive program which estimates the "actud" vaue of arandom
variable (r.v.) vector x in asat of observations

Z=Hx+v
where z are the obsarvations, H isthe transformation matrix, and v is an eror vector.
Background. Theleast squares estimate x which minimizes a cost function

J=(z- ) 'RY(z- H¥)

X = [HTRlH]'lHTRlz

where R isamatrix of weights and the cost function J measures the weighted sum of
squares of deviations. Thisisa purey deterministic solution, obtained by minimizing J
by setting its gradient to zero and solving for k.

Alternativdly, one can argue that the “best” estimate isthe vaue x which maximizesthe
probability of z having occurred, given known statistical propeartiesof v. Thisiscaled
the maximum likdihood egtimate. This gpproach postulates any number of possible
vectors x and maximizes the conditiona probability p(z|x).

A third dternative is to use a Bayes an gpproach, in which the a posteriori probability of x,
given observations z, isfound from

B(x7) = GGt @

where p(x) isan assumed a priori digtribution on X. We can assume any pdf on x we
choose; Bayes theorem will yidd the appropriate conditiond probability p(x|z), given
appropriate digtributions on z|x and z.

The digtribution on z|x can be evauated from the observations, as can that on z. Thethe
issueisfinding amethod to maximize equation (1). By choosing alossfunction in the
form of avariance
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(%)= [x- {"gx- A

we can then compute a variance cost function as the expected vaue of the variance over
dl possible values of %, given a conditiona probability of x on z:

3= x> s rizaxad o, @

where S is some podtive semidefinite matrix. Minimizing J with respect to x givesa
minimum variance edimate x. The minimization is accomplished again by setting the
gradient of Jto zero and solving for x. Itisgiven that the solution of this minimization
is

x=[RHRH HRz ©

where P isthe a priori covariance matrix of x and Gaussian didtributions are assumed
for x and v. Thisassumption isamdiorated by the observation that

Most often dl we know about the characterization of agiven random procesisits autocorrdaion
function. But there dways exists a Gaussian random process possessing the same autocorrdaion
function; we therefore might aswell assume that the given random processisitsaf Gaussian. 3

The Kalman Filter. The Kaman filter uses these principles to caculate the optima vaue of
two matrices K_and K’ which isused in arecursion formulato calculate the next vaue of the
egimate x in theform

X, =K. X +Kz 4

where kk* isthe a podteriori estimate and X, isthe a priori estimate for the k-th
estimate of x.

Each of these vary from the actua vaue x by some estimation error, respectively )’(‘k+ and
X,

X, =X X' )

X, =X +X
The recursive nature of (4) indicates that successive observations z_are obtained as

Z =Hx +V, ©
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An assumyption of zero mean obsarvation and estimation errorsresultsin
K, =1-KH, ™
Subdgtituting (5), (6), and (7) in (4) resultsin an expression for the a podteriori error:
X =[1- K H X +Ky, ®
and an expression for x, '
K=K+ Kk[zk i Hkkk'] ©)

Thetask thenisto find avauefor K. Thisisaccomplished following equation (2) by
minimizing Pk+, the expected variance of the a posteriori error §k+ . The error
covariance matrix is

k

P * Eé&—‘:;kﬂ—g (10)
e 9]

Expanding (10) with (8) and subtituting

E[VkaT] =R,

gives an expression for Pk+ which can be minimized with respect to K. resulting in

- e 1 11
K, =P H, [HkPk H, +Rk] €

where the generdized covariance matrix R, is estimated on each successive st of
obsarvations as* by

k k

R :ix él- 1‘1><1T: T (12
n-1 n

and 1 isthe nx1 vector of 1s.
A smpler expression for Pk+ is obtained from (11):

P’ = [| - Kka]Pk' (13
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Strictly, we find the next a priori error covariance matrix, P~ from the sate trangition
matrix F , where x_~=F x* and

- = T
Pk+1 :FkPk Fk +Qk 14

where Q,_ isthe covariance of the sysem noise w,. In practicewetakeF =1 and Q, =0.
Under this process, then

P =P (15

k+1 k

In summary, given initia conditions for the unknown variables x , the error covariance
matrix P, and the observation error covariance matrix R with a given system model

z =Hx +V, (6)

we calculate the Kalman gain matrix K, with (11) and the updated variable covariance
error matrix with(13), then calculate the next variable estimate from (9):

K=K+ Kk[zk i Hkkk'] ©)

Wethenst B, = Pk+ and continue iteration until (9) converges satisfactorily.



