
THE KALMAN FILTER1

The Kalman Filter2 is a recursive program which estimates the "actual" value of a random

variable (r.v.) vector x in a set of observations

z = Hx + v

where z are the observations, H is the transformation matrix, and v is an error vector.

Background.  The least squares estimate $x which minimizes a cost function

( ) ( )J = − −−z Hx R z Hx
T

$ $1

is

[ ]$x H R H H R zT T= − − −1 1 1

where R is a matrix of weights and the cost function J measures the weighted sum of
squares of deviations.  This is a purely deterministic solution, obtained by minimizing J
by setting its gradient to zero and solving for  $x.

Alternatively, one can argue that the “best” estimate is the value $x which maximizes the
probability of z having occurred, given known statistical properties of v.  This is called
the maximum likelihood estimate.  This approach postulates any number of possible
vectors x and maximizes the conditional probability p(z|x).

A third alternative is to use a Bayesian approach, in which the a posteriori probability of x,
given observations z, is found from
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where p(x) is an assumed a priori distribution on x.  We can assume any pdf on x we
choose; Bayes theorem will yield the appropriate conditional probability p(x|z), given
appropriate distributions on z|x and z.

The distribution on z|x can be evaluated from the observations, as can that on z.  The the
issue is finding a method to maximize equation (1).  By choosing a loss function in the
form of a variance
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( ) [ ] [ ]L ~ $ $x x x Sx x
T= − −

we can then compute a variance cost function as the expected value of the variance over
all possible values of x, given a conditional probability of x on z:

[ ] [ ] ( )J p dxdx dxn= − −∫∫∫ $ $x x Sx x xz
T

x

1 2L (2)

where S is some positive semidefinite matrix.  Minimizing J with respect to x gives a
minimum variance estimate $x.  The minimization is accomplished again by setting the
gradient of J to zero and solving for $x.  It is given that the solution of this minimization
is

[ ]$x P H R H H R zT T= − −
−

−
0

1 1
1
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where P
0
 is the a priori covariance matrix of x and Gaussian distributions are assumed

for x and v.  This assumption is ameliorated by the observation that

Most often all we know about the characterization of a given random proces is its autocorrelation
function.  But there always exists a Gaussian random process possessing the same autocorrelation

function; we therefore might as well assume that the given random process is itself Gaussian.3

The Kalman Filter.  The Kalman filter uses these principles to calculate the optimal value of
two matrices K

k
 and K’

k
 which is used in a recursion formula to calculate the next value of the

estimate $x in the form

$ ' $x K x K zk k k k k
+ −= + (4)

where $xk
+  is the a posteriori estimate and $xk

−  is the a priori estimate for the k-th

estimate of x.

Each of these vary from the actual value x by some estimation error, respectively ~xk
+  and

~xk
− :
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(5)

The recursive nature of (4) indicates that successive observations z
k
 are obtained as

z
k
 = Hx

k
 + v

k
(6)
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An assumption of zero mean observation and estimation errors results in

K I K H'
k k k= − (7)

 Substituting (5), (6), and (7) in (4) results in an expression for the a posteriori error:

[ ]~ ~x I K H x K v
k k k k k k

+ −= − + (8)

and an expression for $xk

+ :

[ ]$ $ $x x K z H x
k k k k k k

+ − −= + − (9)

The task then is to find a value for K
k
.  This is accomplished following equation (2) by

minimizing P
k

+, the expected variance of the a posteriori error ~x
k

+ .  The  error

covariance matrix is

P x x
T

k k kE+ + += 
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
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 Expanding (10) with (8) and substituting

[ ]E k k k
v v RT =

gives an expression for P
k

+ which can be minimized with respect to K
k
. resulting in

[ ]K P H H P H R
k k k

T

k k k

T

k= +− − −1 (11)

where the generalized covariance matrix R
k
 is estimated on each successive set of

observations as4 by

R x I 1 1 xT T
k k

n n
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and 1 is the nx1 vector of 1s.

A simpler expression for P
k

+ is obtained from (11):

[ ]P I K H P
k k k k

+ −= − (13)
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Strictly, we find the next a priori error covariance matrix, P
k+1

- from the state transition
matrix Φ k

, where  xk+1

- = Φ k
x

k

+ and

P P Q
k 1 k k k

T

k+
− += +Φ Φ (14)

where Q
k
 is the covariance of the system noise w

k
.  In practice we take Φ k

 = I and Q
k
 = 0.

Under this process, then

P P
k k+

− +=1
(15)

In summary, given initial conditions for the unknown variables x
0
, the error covariance

matrix P
0
, and the observation error covariance matrix R

0
 with a given system model

z
k
 = Hx

k
 + v

k
(6)

we calculate the Kalman gain matrix K
k
 with (11) and the updated variable covariance

error matrix with(13), then calculate the next variable estimate from (9):

[ ]$ $ $x x K z H x
k k k k k k

+ − −= + − (9)

We then set P P
k k+

− +=1
 and continue iteration until (9) converges satisfactorily.


